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Advanced ceramic materials in energy utilization 

http://www.pocketgeographic.com/galleries/jet_engine.gif http://fuelcells.si.edu/images/sofc4.jpg

Most of the internal (hot environment) 
parts in jet engines are coated.
Plasma sprayed or EBPVD (DVD).

Environment friendly, efficient electric 
energy source.
Functional ceramic layers.
Trends – lower operating temperatures 
& increase life. Electrolyte reliability is 
important.
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Common
• Ceramic (cermet) materials.
• Microstructure controls the in-service performance. 
• Need to control/improve:

- Functional properties
- Reliability
- Predict failure

• Complex void microstructures – challenge to characterize. Wide 
size range of voids, possibly anisotropic.

• Complex manufacturing processes with high variability of 
processing parameters.

• In-service conditions are severe – high temperature, temperature 
cycling, chemical effects, erosion ! changes of microstructure 
and therefore performance.

• Need to understand microstructure – properties relationships.



4

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Thermal Barrier Coatings
• Method to increase efficiency of turbine engines (~50oC 

already)
• Single most potential gain if these can be considered 

“prime reliant”
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Computer Modeling
• Engineering development by computer modeling:

- Faster
- More economical
- Preferred method

• However:
- Materials properties are difficult to obtain (measure) for complex 

microstructures like advanced ceramic layered structures.

• Need to establish appropriate set of “descriptors” for 
microstructure (porosity volume, anisotropy, size distribution..)

• Need to understand relationships between:
- Processing parameters and microstructure
- Microstructure and engineering properties (hardness, elastic 

modulus, thermal conductivity…)
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Microstructure – properties relationships 
modeling

• Develop suitable computer models to link the microstructure to 
performance properties and the other way.

• Various computer models and methods being developed 
mostly based on finite element modeling - example “OOF” 
(NIST)…
- Input data for now SEM/OM image (2d, limited resolution)
- Model capable solving problems in 3d, but limited input data 

available in 3d
- Tomography is naturally 3d with input format very close to 2d 

images (both are density maps) – simple transition to new input 
data

OOF – Object-Oriented Finite element analysis of Real Material Microstructures
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Experiment
• No single technique available to cover range of voids in the microstructure –

from nanometers to number of micrometers 
• Combined number of techniques:

- SEM, OM, TEM
- Intrusion porosimetry
- Small-angle scattering (USAXS)
- Tomography

• Using microscopy develop 
microstructure model

• Total volume of porosity 
from intrusion porosimetry

• Evaluate USAXS data with this model
- Quantitative and statistically representative

(~ 0.1 – 0.15 mm3)
- Nanometers to about 1 micrometer

• Tomography for larger features 
- Currently features larger than 1.5 - 2 micrometers

• >>>>Combine to create “mosaic” or “puzzle” picture of microstructure  <<<<
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EBPVD YSZ thermal 
barrier coatings

• Columnar structure
• “Feather-like” pores within columns
• Change of microstructure through thickness
• Usual thickness about 400 µm, up to 1 mm
• In service changes – sintering and cracking 
during thermal cycling
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Microstructural model for USAXS data analysis

• For EBPVD (or DVD) thermal barrier coatings
• Microstructure composed of 4 populations:

- Intercolumnar pores (large, mostly perpendicular to the surface)
- Intracolumnar pores:

- Two populations of feather-like pores
- Population of semi-spherical voids

• Features and parameters:
- Independent size, aspect ratio, contrast, orientation distribution
- Dilute limit approximation
- Simplified size distribution assigned to each population
- Diffraction & refraction accounted for 
- Allows least square fitting of parameters

• Complex USAXS data collection (2D collimated) – need to collect many 
measurements to describe the strong anisotropy:
- About 12 hours/sample data collection
- Few days/sample data analysis
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10 µm

Population 1:
Intercolumnar

Voids
<o.d.>=0.72 µm

6.1%

Population 3:
Fine

Intracolumnar
Voids

<o.d.>=0.033 µm
3.8%

Population 2:
Coarse 

Intracolumnar
Voids

<o.d.>=0.19 µm
3.9%

Population 4:
Nano-

Globular 
Voids

<o.d.>=0.039µm
8.7%

TOTAL POROSITY: 
22.56 % 

(1) INTERCOLUMNAR PORES:
POROSITY:6.1 ± 0.6 %
<O.D.>: 722 ± 7 nm

[Apect Ratio = 0.110, 85° to 
substrate]

(2) COARSE ‘FEATHER’ 
PORES:

POROSITY:3.9 ± 0.4 %
<O.D.>: 191 ± 20 nm

[Aspect Ratio = 0.068, 49° to 
substrate]

(3) FINE nm-PORES:
POROSITY:3.8 ± 0.4 %
<O.D.>: 33 ± 4 nm

[Aspect Ratio = 0.050, 49° to 
substrate]

(4) GLOBULAR nm-PORES:
POROSITY: 8.7 ± 0.9 %
DIAMETER:   39 ± 4 nm
[MEAN DIMENSIONS =

39.1 x 39.1 x 27.4 nm]



11

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Tomography

• Used 2BM tomography at XOR
• About 1 – 1.5 micrometers resolution
• Sample size 

- about 150 x 150 micrometers cross section
- 1 mm height

• Data set collection – about 15 minutes
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Tomography of EBPVD Zirconia
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Inverted Image: 3D Pore Morphology in EBPVD TBCs
Top-View
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Inverted Image: 3D Pore Morphology in EBPVD TBCs
Top-View
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Tomographic visualization EBPVD

150 slices @ 1.33 um each slice
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Details
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Competition zone, 
fine pore morphology

Columnar pore 
morphology

100 slices,
150 microns thick

1-1.5 µm resolution

3D Pore Morphology in EBPVD TBCs

Sintering effects in
isothermal exposure

(1200oC/550 hrs)
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Solid oxide fuel cells
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Solid oxide fuel cell microstructures

Layered structure
• Top (cathode) porous and fragile
• Thin layer of electrolyte
• Lower (anode) layer - porous
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Preliminary Void Size 
Distributions  2-D collimated 
USAXS 

SEM micrograph near interfaces.
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Pore Diameter (µm)

LSM Cathode
Ni/YSZ Anode (1)
Ni/YSZ Anode (2)

Volume Fractions (%):
Cathode: 24.6

Anode (1): 10.0
Anode (2): 10.5

Surface Areas (m2 cm-3):
Cathode: 3.39 ± 0.01

Anode (1): 1.06 ± 0.01
Anode (2): 1.20 ± 0.01

0.25 µm – 0.75 µm

0.3 µm – 0.8 µm

1.2 µm

2.8 µm

obtained from 
Maximum Entropy 

Analysis
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100 µm

100 µm

100 µm

Microtomography
of SOFCs

Porous Ni(YSZ) Anode

Dense YSZ Layer

Porous LSM Cathode
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32% Anode SOFC
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Or another view on LSM sample
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100 µm

Slices in LSM 
Cathode:

Porous Layer

YSZ Electrolyte:
Dense Layer

Slices in Ni(YSZ) 
Anode:

Porous Layer

Tomography Resolution:  
~1.3  µm

100 µm
100 µm

100 µm
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Conclusions

• Significant development in materials characterization of 
advanced ceramic materials for energy applications is needed

• Tomography is ideal tool for characterization of voids in these 
complex structures. The resulting data are ideally suited as 
input data for computer modeling. 

• Tomography improvements needed :
- Improvements in resolution (at least to 100nm, better to 10-20 

nm)
- Keeping the field of view on the current level (at least 150 – 200 

micrometers)
- Useful further features:

- Element specificity
- In situ capabilities with furnace and chemical cell capabilities



26

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Wish list
• Field of view : 200 micron x 200 micron or larger
• Resolution : better than 50 nanometers
• Energy range : 10 – 60 keV
• Data processing : post reconstruction analysis support

- De-blur, threshold, real density calibration
- Quantitative values mining
- Imaging 3D

• Data manipulation : storage and handling
• Sample environment: furnace & chemical environment cell
• “One stop experiment” 

- Pre-experiment support
- Experiment
- Data analysis and evaluation


